\(\int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx\) [796]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 101 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {5 a x}{2}-\frac {a \cos (c+d x)}{d}-\frac {2 a \sec (c+d x)}{d}+\frac {a \sec ^3(c+d x)}{3 d}-\frac {5 a \tan (c+d x)}{2 d}+\frac {5 a \tan ^3(c+d x)}{6 d}-\frac {a \sin ^2(c+d x) \tan ^3(c+d x)}{2 d} \]

[Out]

5/2*a*x-a*cos(d*x+c)/d-2*a*sec(d*x+c)/d+1/3*a*sec(d*x+c)^3/d-5/2*a*tan(d*x+c)/d+5/6*a*tan(d*x+c)^3/d-1/2*a*sin
(d*x+c)^2*tan(d*x+c)^3/d

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {2917, 2670, 276, 2671, 294, 308, 209} \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=-\frac {a \cos (c+d x)}{d}+\frac {5 a \tan ^3(c+d x)}{6 d}-\frac {5 a \tan (c+d x)}{2 d}+\frac {a \sec ^3(c+d x)}{3 d}-\frac {2 a \sec (c+d x)}{d}-\frac {a \sin ^2(c+d x) \tan ^3(c+d x)}{2 d}+\frac {5 a x}{2} \]

[In]

Int[Sin[c + d*x]*(a + a*Sin[c + d*x])*Tan[c + d*x]^4,x]

[Out]

(5*a*x)/2 - (a*Cos[c + d*x])/d - (2*a*Sec[c + d*x])/d + (a*Sec[c + d*x]^3)/(3*d) - (5*a*Tan[c + d*x])/(2*d) +
(5*a*Tan[c + d*x]^3)/(6*d) - (a*Sin[c + d*x]^2*Tan[c + d*x]^3)/(2*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 308

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 2670

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[-f^(-1), Subst[Int[(1 - x^2
)^((m + n - 1)/2)/x^n, x], x, Cos[e + f*x]], x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n - 1)/2]

Rule 2671

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> With[{ff = FreeFactors[Ta
n[e + f*x], x]}, Dist[b*(ff/f), Subst[Int[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, b*(Tan[e + f*x]/ff
)], x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2]

Rule 2917

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rubi steps \begin{align*} \text {integral}& = a \int \sin (c+d x) \tan ^4(c+d x) \, dx+a \int \sin ^2(c+d x) \tan ^4(c+d x) \, dx \\ & = -\frac {a \text {Subst}\left (\int \frac {\left (1-x^2\right )^2}{x^4} \, dx,x,\cos (c+d x)\right )}{d}+\frac {a \text {Subst}\left (\int \frac {x^6}{\left (1+x^2\right )^2} \, dx,x,\tan (c+d x)\right )}{d} \\ & = -\frac {a \sin ^2(c+d x) \tan ^3(c+d x)}{2 d}-\frac {a \text {Subst}\left (\int \left (1+\frac {1}{x^4}-\frac {2}{x^2}\right ) \, dx,x,\cos (c+d x)\right )}{d}+\frac {(5 a) \text {Subst}\left (\int \frac {x^4}{1+x^2} \, dx,x,\tan (c+d x)\right )}{2 d} \\ & = -\frac {a \cos (c+d x)}{d}-\frac {2 a \sec (c+d x)}{d}+\frac {a \sec ^3(c+d x)}{3 d}-\frac {a \sin ^2(c+d x) \tan ^3(c+d x)}{2 d}+\frac {(5 a) \text {Subst}\left (\int \left (-1+x^2+\frac {1}{1+x^2}\right ) \, dx,x,\tan (c+d x)\right )}{2 d} \\ & = -\frac {a \cos (c+d x)}{d}-\frac {2 a \sec (c+d x)}{d}+\frac {a \sec ^3(c+d x)}{3 d}-\frac {5 a \tan (c+d x)}{2 d}+\frac {5 a \tan ^3(c+d x)}{6 d}-\frac {a \sin ^2(c+d x) \tan ^3(c+d x)}{2 d}+\frac {(5 a) \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\tan (c+d x)\right )}{2 d} \\ & = \frac {5 a x}{2}-\frac {a \cos (c+d x)}{d}-\frac {2 a \sec (c+d x)}{d}+\frac {a \sec ^3(c+d x)}{3 d}-\frac {5 a \tan (c+d x)}{2 d}+\frac {5 a \tan ^3(c+d x)}{6 d}-\frac {a \sin ^2(c+d x) \tan ^3(c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.75 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {a \left (30 c+30 d x-12 \cos (c+d x)-24 \sec (c+d x)+4 \sec ^3(c+d x)-3 \sin (2 (c+d x))-28 \tan (c+d x)+4 \sec ^2(c+d x) \tan (c+d x)\right )}{12 d} \]

[In]

Integrate[Sin[c + d*x]*(a + a*Sin[c + d*x])*Tan[c + d*x]^4,x]

[Out]

(a*(30*c + 30*d*x - 12*Cos[c + d*x] - 24*Sec[c + d*x] + 4*Sec[c + d*x]^3 - 3*Sin[2*(c + d*x)] - 28*Tan[c + d*x
] + 4*Sec[c + d*x]^2*Tan[c + d*x]))/(12*d)

Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.11

method result size
parallelrisch \(\frac {a \left (60 d x \sin \left (2 d x +2 c \right )-120 d x \cos \left (d x +c \right )+64 \sin \left (2 d x +2 c \right )+3 \cos \left (4 d x +4 c \right )+80 \cos \left (2 d x +2 c \right )+10 \sin \left (d x +c \right )-128 \cos \left (d x +c \right )-6 \sin \left (3 d x +3 c \right )+45\right )}{24 d \left (\sin \left (2 d x +2 c \right )-2 \cos \left (d x +c \right )\right )}\) \(112\)
risch \(\frac {5 a x}{2}+\frac {i a \,{\mathrm e}^{2 i \left (d x +c \right )}}{8 d}-\frac {a \,{\mathrm e}^{i \left (d x +c \right )}}{2 d}-\frac {a \,{\mathrm e}^{-i \left (d x +c \right )}}{2 d}-\frac {i a \,{\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}-\frac {2 a \left (-3 i {\mathrm e}^{2 i \left (d x +c \right )}+6 \,{\mathrm e}^{3 i \left (d x +c \right )}-7 i+8 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{3 \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{3} d}\) \(139\)
derivativedivides \(\frac {a \left (\frac {\sin ^{7}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {4 \left (\sin ^{7}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )}-\frac {4 \left (\sin ^{5}\left (d x +c \right )+\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )+a \left (\frac {\sin ^{6}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{6}\left (d x +c \right )}{\cos \left (d x +c \right )}-\left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )\right )}{d}\) \(154\)
default \(\frac {a \left (\frac {\sin ^{7}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {4 \left (\sin ^{7}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )}-\frac {4 \left (\sin ^{5}\left (d x +c \right )+\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )+a \left (\frac {\sin ^{6}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{6}\left (d x +c \right )}{\cos \left (d x +c \right )}-\left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )\right )}{d}\) \(154\)
norman \(\frac {-\frac {5 a x}{2}+\frac {16 a}{3 d}+\frac {5 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {20 a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {22 a \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {20 a \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}+\frac {5 a \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {5 a x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+5 a x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-5 a x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {5 a x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {5 a x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {16 a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {32 a \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}\) \(235\)

[In]

int(sec(d*x+c)^4*sin(d*x+c)^5*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/24/d*a*(60*d*x*sin(2*d*x+2*c)-120*d*x*cos(d*x+c)+64*sin(2*d*x+2*c)+3*cos(4*d*x+4*c)+80*cos(2*d*x+2*c)+10*sin
(d*x+c)-128*cos(d*x+c)-6*sin(3*d*x+3*c)+45)/(sin(2*d*x+2*c)-2*cos(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.97 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {3 \, a \cos \left (d x + c\right )^{4} - 15 \, a d x \cos \left (d x + c\right ) + 17 \, a \cos \left (d x + c\right )^{2} + {\left (15 \, a d x \cos \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a\right )} \sin \left (d x + c\right ) - 4 \, a}{6 \, {\left (d \cos \left (d x + c\right ) \sin \left (d x + c\right ) - d \cos \left (d x + c\right )\right )}} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^5*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/6*(3*a*cos(d*x + c)^4 - 15*a*d*x*cos(d*x + c) + 17*a*cos(d*x + c)^2 + (15*a*d*x*cos(d*x + c) - 3*a*cos(d*x +
 c)^2 + 2*a)*sin(d*x + c) - 4*a)/(d*cos(d*x + c)*sin(d*x + c) - d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**4*sin(d*x+c)**5*(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.86 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {{\left (2 \, \tan \left (d x + c\right )^{3} + 15 \, d x + 15 \, c - \frac {3 \, \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{2} + 1} - 12 \, \tan \left (d x + c\right )\right )} a - 2 \, a {\left (\frac {6 \, \cos \left (d x + c\right )^{2} - 1}{\cos \left (d x + c\right )^{3}} + 3 \, \cos \left (d x + c\right )\right )}}{6 \, d} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^5*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/6*((2*tan(d*x + c)^3 + 15*d*x + 15*c - 3*tan(d*x + c)/(tan(d*x + c)^2 + 1) - 12*tan(d*x + c))*a - 2*a*((6*co
s(d*x + c)^2 - 1)/cos(d*x + c)^3 + 3*cos(d*x + c)))/d

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.33 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {15 \, {\left (d x + c\right )} a + \frac {3 \, a}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1} + \frac {6 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, a\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2}} + \frac {21 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 48 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 23 \, a}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{3}}}{6 \, d} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^5*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/6*(15*(d*x + c)*a + 3*a/(tan(1/2*d*x + 1/2*c) + 1) + 6*(a*tan(1/2*d*x + 1/2*c)^3 - 2*a*tan(1/2*d*x + 1/2*c)^
2 - a*tan(1/2*d*x + 1/2*c) - 2*a)/(tan(1/2*d*x + 1/2*c)^2 + 1)^2 + (21*a*tan(1/2*d*x + 1/2*c)^2 - 48*a*tan(1/2
*d*x + 1/2*c) + 23*a)/(tan(1/2*d*x + 1/2*c) - 1)^3)/d

Mupad [B] (verification not implemented)

Time = 15.18 (sec) , antiderivative size = 243, normalized size of antiderivative = 2.41 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {5\,a\,x}{2}-\frac {\left (\frac {a\,\left (30\,d\,x-30\right )}{6}-5\,a\,d\,x\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (5\,a\,d\,x-\frac {a\,\left (30\,d\,x-60\right )}{6}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\left (\frac {a\,\left (30\,d\,x-50\right )}{6}-5\,a\,d\,x\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\frac {20\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{3}+\left (5\,a\,d\,x-\frac {a\,\left (30\,d\,x-14\right )}{6}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {a\,\left (30\,d\,x-4\right )}{6}-5\,a\,d\,x\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\left (5\,a\,d\,x-\frac {a\,\left (30\,d\,x-34\right )}{6}\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {a\,\left (15\,d\,x-32\right )}{6}-\frac {5\,a\,d\,x}{2}}{d\,{\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}^3\,\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^2} \]

[In]

int((sin(c + d*x)^5*(a + a*sin(c + d*x)))/cos(c + d*x)^4,x)

[Out]

(5*a*x)/2 - ((a*(15*d*x - 32))/6 - tan(c/2 + (d*x)/2)*((a*(30*d*x - 34))/6 - 5*a*d*x) + tan(c/2 + (d*x)/2)^2*(
(a*(30*d*x - 4))/6 - 5*a*d*x) - tan(c/2 + (d*x)/2)^3*((a*(30*d*x - 14))/6 - 5*a*d*x) + tan(c/2 + (d*x)/2)^7*((
a*(30*d*x - 30))/6 - 5*a*d*x) + tan(c/2 + (d*x)/2)^5*((a*(30*d*x - 50))/6 - 5*a*d*x) - tan(c/2 + (d*x)/2)^6*((
a*(30*d*x - 60))/6 - 5*a*d*x) + (20*a*tan(c/2 + (d*x)/2)^4)/3 - (5*a*d*x)/2)/(d*(tan(c/2 + (d*x)/2) - 1)^3*(ta
n(c/2 + (d*x)/2) + 1)*(tan(c/2 + (d*x)/2)^2 + 1)^2)